GABAergic innervation organizes synaptic and extrasynaptic GABAA receptor clustering in cultured hippocampal neurons.
نویسندگان
چکیده
We have studied the effects of GABAergic innervation on the clustering of GABA(A) receptors (GABA(A)Rs) in cultured hippocampal neurons. In the absence of GABAergic innervation, pyramidal cells form small (0.36 +/- 0.01 micrometer diameter) GABA(A)R clusters at their surface in the dendrites and soma. When receiving GABAergic innervation from glutamic acid decarboxylase-containing interneurons, pyramidal cells form large (1.62 +/- 0.08 micrometer breadth) GABA(A)R clusters at GABAergic synapses. This is accompanied by a disappearance of the small GABA(A)R clusters in the local area surrounding each GABAergic synapse. Although the large synaptic GABA(A)R clusters of any neuron contained all GABA(A)R subunits and isoforms expressed by that neuron, the small clusters not localized at GABAergic synapses showed significant heterogeneity in subunit and isoform composition. Another difference between large GABAergic and small non-GABAergic GABA(A)R clusters was that a significant proportion of the latter was juxtaposed to postsynaptic markers of glutamatergic synapses such as PSD-95 and AMPA receptor GluR1 subunit. The densities of both the glutamate receptor-associated and non-associated small GABA(A)R clusters were decreased in areas surrounding GABAergic synapses. However, no effect on the density or distribution of glutamate receptor clusters was observed. The results suggest that there are local signals generated at GABAergic synapses that induce both assembly of large synaptic GABA(A)R clusters at the synapse and disappearance of the small GABA(A)R clusters in the surrounding area. In the absence of GABAergic innervation, weaker GABA(A)R-clustering signals, generated at glutamatergic synapses, induce the formation of small postsynaptic GABA(A)R clusters that remain juxtaposed to glutamate receptors at glutamatergic synapses.
منابع مشابه
Homeostatic competition between phasic and tonic inhibition.
The GABAA receptors are the major inhibitory receptors in the brain and are localized at both synaptic and extrasynaptic membranes. Synaptic GABAA receptors mediate phasic inhibition, whereas extrasynaptic GABAA receptors mediate tonic inhibition. Both phasic and tonic inhibitions regulate neuronal activity, but whether they regulate each other is not very clear. Here, we investigated the funct...
متن کاملCultured Hippocampal Pyramidal Neurons Express Two Kinds of GABAA Receptors.
We combined a study of the subcellular distribution of the alpha1, alpha2, alpha4, beta1, beta2/3, gamma2, and delta subunits of the GABAA receptor with an electrophysiological analysis of GABAA receptor currents determine the to types of receptors expressed on cultured hippocampal pyramidal neurons. The immunocytochemistry study demonstrated that alpha1, alpha2, beta2/3, and gamma2 subunits fo...
متن کاملBehavioural correlates of an altered balance between synaptic and extrasynaptic GABAAergic inhibition in a mouse model.
GABAA receptors mediate fast phasic inhibitory postsynaptic potentials and participate in slower tonic extrasynaptic inhibition. Thy1alpha6 mice with ectopic forebrain expression of GABAA receptor alpha6 subunits exhibit increased extrasynaptic GABAA receptor-mediated background conductance and reduced synaptic GABAA receptor currents in hippocampal CA1 neurons [W. Wisden et al. (2002) Neuropha...
متن کاملSynaptic GABAA receptors are directly recruited from their extrasynaptic counterparts.
GABAA receptors mediate the majority of fast synaptic inhibition in the brain. The accumulation of these ligand-gated ion channels at synaptic sites is a prerequisite for neuronal inhibition, but the molecular mechanisms underlying this phenomenon remain obscure. To further understand these processes, we have examined the cellular origins of synaptic GABAA receptors. To do so, we have created f...
متن کاملPerspectives in Pharmacology A New Benzodiazepine Pharmacology
Classical benzodiazepine drugs are in wide clinical use as anxiolytics, hypnotics, anticonvulsants, and muscle relaxants. They act by enhancing the -aminobutyric acidA (GABAA) receptor function in the central nervous system. The pharmacological relevance of the multitude of structurally diverse GABAA receptor subtypes has only recently been identified. Based on an in vivo point mutation strateg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 3 شماره
صفحات -
تاریخ انتشار 2002